Life After Death: Using Bacterial Diversity to Determine Postmortem Interval

Elise Clancy & Jutta Heller* (TBIOMD 492)

Background

- Postmortem interval (PMI) is key to solving homicide and missing persons cases
- No universally accepted method for PMI determination
- Current methods are expensive and inaccurate: tooth enamel wear, thanatochemistry of putrefactive fluids/ organic biomarkers, DNA recovery, etc.
- Decay is driven by succession of bacteria

Figure 1. (Left) Graph exemplifying the degree-day system (Pixelrz.com) Figure 2. (Right) Graph depicting the initial processes of decay. (Atul Abhishek)

Figure 3. Bacterial α - diversity during the first 24 hours of decay in four sterile body sites (A- brain, B- heart, C- liver, D- kidney) (Liu et al. 2023).

Discussion

- Degree–day system must be used in tandem
- All PMI determination methods rely on bacterial diversity
- Clostridium increase throughout wet decay
- Bacteroides negatively correlated with PMI
- Proteobacteria positively correlated with PMI
- Cost-effective, accessible, accurate, timely method for PMI determination

Figure 5. Results of PMI determination using bacterial diversity vs. true PMI in several body sites using invasive testing methods (Metcalf et al. 2013).

Autolysis

- Cell death begins 4 minutes postmortem
- Induced by lack of ATP and oxygen
- Frees nutrients for bacterial metabolism

Bacterial Signature

- Thermus populations fluctuate in first 24h
- Bacteroides in all body sites ıncrease
- Acinetobacter emerge at 8h, necrotization begins

Pig corpse undergoing autolysis.

Bloat

- Digestion of tissues surrounding gut
- Gases cause corpse to swell
- Onset concurrent with autoly-S₁S

Bacterial Signature

- Shift of aerobic to anaerobic bacteria
- Proteobacteria $\leq 80\%$ of bacterial composition
- Anaerobes such as *Clostridi*um, Pseudomonas, Bacteroides, Lactobacillus prevalent

Pig corpse undergoing bloat.

Putrefaction

- Cadaverine, putrescine, hydrogen sulfide, methane
- Liquefaction of tissues
- Progressed by insects and other eukaryotes (e.g. maggots)

Bacterial Signature

- Clostridium and other Firmicutes saponify fats, forming adipocere blisters
- Proteobacteria, Bacteroides peak before decreasing
- Facultative anaerobes Bifidobacteria, Actinobacteria, Firmicutes

Figure 4C: Pig corpse undergoing putrefac-

Fluid Purge

- Deflation of corpse, purge of liquefied tissues
- Tougher tissues (i.e. skin) continue decaying
- Internal environment interacts with grave site

Bacterial Signature

- Ignatzschineria, Planococcaceae opportunism
- Acinetobacter decrease due to pH change
- Rhizobiales, Agrobacterium in soil graves

Pig corpse post-

Diagenesis

- Dry, skeletal remains
- Oxidation-reduction of minerals in bone matrix (Calcium, magnesium, potassium)
- Breakdown of collagen

Bacterial Signature

- Microaerophilic, alkaliphilic, magnetotactic species
- Deltaproteobacteria take advantage of high pH of grave soil
- Depends on competition with diversity in grave site

Figure 4. The same piglet documented as decomposition progresses. T= time in days since euthanasia. A— autolysis, B— bloat, C— putrefaction, D— Fluid purge, E— diagenesis (Comstock et al. 2015).