The poster introduces *n*-dimensional real projective spaces, denoted as $\mathbb{R}P^n$. The space $\mathbb{R}P^1$ is used as an example to give intuition into real projective spaces in general. We further this intuition by providing homeomorphisms between $\mathbb{R}P^1$ and other common spaces. The fundamental groups of $\mathbb{R}P^1$ and $\mathbb{R}P^2$ are also described. We also show the attaching of e^{n+1} cells, which can be used to create an $\mathbb{R}P^{n+1}$ space from $\mathbb{R}P^n$. The embedding $\mathbb{R}P^1 \subset \mathbb{R}P^2 \subset \ldots \mathbb{R}P^n \subset \mathbb{R}P^{n+1} \subset \ldots$ is also examined. This shows the CW-complex structure of $\mathbb{R}P^n$.